ANALISIS PENGELOMPOKAN DATA NILAI SISWA UNTUKMENENTUKAN SISWA BERPRESTASI MENGGUNAKAN METODE CLUSTERING K- MEANS

Authors

  • Mochammad Syukron Ramadani universitas Ibrahimy Author
  • Zaehol Fatah Universitas Ibrahimy Author

DOI:

https://doi.org/10.69714/hq2bsy84

Keywords:

K-Means Clustering, Data Grouping, High-Achieving Students, Data Analysis, Performance Evaluation

Abstract

Identifying high-achieving students is a critical step in evaluating learning outcomes to enhance the quality of education. This study aims to analyze the clustering of student grade data using the K-Means Clustering method to identify groups of high-achieving students. The K-Means method is utilized due to its effectiveness in grouping data based on value similarity. The data used in this study consist of students' academic scores across various subjects. The research stages include data collection, preprocessing, applying the K-Means algorithm, and validating the clustering results. The results show that the K-Means method successfully grouped students into several categories, such as high-achieving, moderate-achieving, and low-achieving students. The clustering analysis indicates that high-achieving students exhibit consistent performance across all subjects, whereas low-achieving students tend to show significant variations in their scores. This method also provides data visualization that helps schools make informed decisions to improve student performance. Thus, the implementation of the K-Means method in clustering student grade data can serve as an effective and efficient approach to support evaluation processes and data-driven decision-making.

References

D .T. Larose and C. D. Larose, Discovering Knowledge in Data : An Introduction to Data Mining:Second edition, vol. 978047098. 2014.

A. & R.Andrian, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,” J. Ilm. Tek., vol. 18, no. 1, hal. 76–82, 2015.

A. Ramadhan dan Z. Efendi, “Perbandingan K-Means dan Fuzzy C-Means untuk Pengelompokan Data User Knowledge Modeling,” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 9, hal. 18–19, 2017.

P. A. Jusia dan F. M. Irfan, “Clustering Data Untuk Rekomendasi Penentuan Jurusan Perguruan Tinggi Menggunakan Metode K-Means,” J. IKRA-ITH Inform., vol. 3, no. 3, hal. 75–84, 2019.

Netriwati, “K-Means – Penerapan, Permasalahan dan Metode Terkait,” J. Pendidik. Mat., vol. 3, no. Pebruari, hal. 47–60, 2017

N. Iriadi, Data Mining: Konsep dan Aplikasi, Yogyakarta: Andi Offset, 2021.

A. B. Widodo, Pengantar Data Mining, Edisi 2, Yogyakarta: Andi Offset, 2013.

G. Abdillah et al., “Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di PDAM Tirta Raharja Menggunakan Algoritma K-Means,” Sentika, vol. 2016, no. Sentika, pp. 18–19, 2016.

Y. Darmi dan A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, vol. 12, no. 2, hal. 148–157, 2016.

D.H.Margareth and H.Precise, Data Mining introductory and advanced topicData Mining introductory and advanced Topics, vol. 9780130888. 2020

Downloads

Published

2024-12-20

How to Cite

ANALISIS PENGELOMPOKAN DATA NILAI SISWA UNTUKMENENTUKAN SISWA BERPRESTASI MENGGUNAKAN METODE CLUSTERING K- MEANS (Mochammad Syukron Ramadani & Zaehol Fatah , Trans.). (2024). Jurnal Riset Sistem Informasi, 1(4), 103-110. https://doi.org/10.69714/hq2bsy84