PENERAPAN DATA MINING MENGGUNAKAN METODE K-MEANS CLUSTERING UNTUK ANALISA PENJUALAN TOKO UMAMA HIJAB KALIWATES JEMBER
DOI:
https://doi.org/10.69714/3ty90586Keywords:
Data Mining, K-Means, Umama Hijab and RapidminerAbstract
Umama Hijab Kaliwates Jember Shop is a shop that specializes in selling hijabs. However, of the various hijabs being sold, not all of them sell well, some are less popular. Data on sales, purchases of goods and unexpected expenses at the Umama Hijab Store is not well structured, so the data only functions as store archives and cannot be used to develop marketing strategies. Therefore, it is necessary to apply data mining using the K-Means method at the Umama Hijab Shop. Data mining is the process of collecting and processing data to extract important information that supports decision making. The K-Means method can be applied to find out which hijab sales are selling well, selling well and not selling well. The application of this method is carried out by grouping hijab stock data. The process begins by selecting 3 random groups as initial centroids. After the data in each group did not change, the final results showed that there were 24 products that were selling well, 59 products were selling well, and 17 products were not selling well. Then, the application of the K-Means method in RapidMiner is carried out by entering product stock data, namely initial stock, sold stock and ending stock, which will be converted into a database in Ms. Excel. The data is then connected to RapidMiner Tools and processed to form groups using the K-Means algorithm. After that, RapidMiner produces product groups with high, medium and low demand.
References
I. Wahyudi, S. Bahri, and P. Handayani, “Aplikasi Pembelajaran Pengenalan Budaya Indonesia,” vol. V, no. 1, pp. 135–138, 2019.
Y. Yulianti, D. Y. Utami, N. Hikmah, and F. N. Hasan, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Mengetahui Minat Customer Di Toko Hijab,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 241–246, 2019.
B. M. Metisen and H. L. Sari, “Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila,” J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015.
N. Normah, B. Rifai, and P. Sari, “Algoritma Apriori Sebagai Solusi Kontrol Persediaan Suku Cadang Mobil PT. Buanasakti Aneka Motor Jakarta,” Paradig. - J. Komput. danInform., vol. 22, no. 2, pp. 161–168, 2020.
A. Bahar, B. Pramono, and L. H. S. Sagala, “Penentuan strategi penjualan alat-alat tattoo di studio sonyxtattoo menggunakan metode,” semanTIK, vol. 2, no. 2, pp. 75–86, 2016.
N. Hadiza, W. N. Sari, and H. Afriyadi, “Perancangan Sistem Informasi Pengelolaan Surat Masuk dan Surat Keluar pada Kantor Dinas Pengendalian Penduduk dan Keluarga Berencana Kabupaten Sarolangun,” vol. 05, no. 04, pp. 11406–11414, 2023.
E. Irwansyah and M. Faisal, Advanced Clustering: Teori dan Aplikasi. DeePublish, 2015. [Online]. Available: https://books.google.co.id/books?id=8y80BgAAQBAJ
M. Triandini, S. Defit, and G. W. Nurcahyo, “Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia,” J. Inf. dan Teknol., vol. 3, pp. 167–173, 2021, doi: 10.37034/jidt.v3i3.120.
A. Salam, D. Adiatma, and J. Zeniarja, “Implementasi Algoritma K-Means Dalam Pengklasteran untuk Rekomendasi Penerima Beasiswa PPA di UDINUS,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 62–68, 2020, doi: 10.33633/joins.v5i1.3350.
Sharmila, T., & Sangeetha, R. (2021). "Optimizing Clustering Performance Using Enhanced K-Means Algorithm for Market Segmentation." International Journal of Data Mining & Knowledge Management Process (IJDKP), 11(2), 15-25. doi:10.5121/ijdkp.2021.11202.