PENERAPAN ALGORITMA DECISION TREE UNTUK KLASIFIKASI KONSUMSI ENERGI LISTRIK RUMAH TANGGA DENGAN PENGGUNAAN RAPIDMINER

Authors

  • Ubeitul Maltuf Universitas Ibrahimy Situbondo Author
  • Zaehol Fatah Universitas Ibrahimy Situbondo Author

DOI:

https://doi.org/10.69714/0hmk8712

Keywords:

Algorithm, Classification, Decision Tree, Energy Consumption, RapidMiner

Abstract

The research aims to explore and understand energy consumption patterns in households. By using the Decision Tree algorithm, to classify the level of electrical energy consumption. And data on household electrical energy consumption can be obtained from various sources, such as Household electricity meter. Survey or questionnaire filled out by homeowners regarding the use of electrical appliances. Based on the image above, the application of the Decision Tree algorithm in analyzing risk factors for  The classification of household electrical energy consumption produces an accuracy value of 100.00%. From the displayed confusion matrix, we can see the distribution of predicted and actual values for various classes. For example, in the class "true 110 25," there are 17052 correct predictions. The evaluation results also show the precision and recall values for each class. The highest precision was achieved in the "true 2205" class with 100% recall, while the precision was found in the "true 122.5" class of 100.00%.

References

Loh, W. Y. (2011). "Classification and Regression Trees." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14-23.

Teknologi, Jurnal et al. 2021. “Analisis Data Mining Untuk Clustering Kasus ): 100–108.

Arrohman, Supri, and Zaehol Fatah. 2024. “Gudang Jurnal Multidisiplin Ilmu Prediksi Diabetes Menggunakan Algoritma Klasifikasi K-Nearest Neighbors ( K-NN ) Pada Perempuan Indian Pima.” 2: 220–26.

Oktafiani, Rian, Arief Hermawan, and Donny Avianto. 2023. “Pengaruh Komposisi Split Data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning.” Jurnal Sains dan Informatika 9(April): 19–28.

Al-Giffary, Farhan Rizky, and Martanto Martanto. 2024. “Klasifikasi Kelulusan Siswa Tahun 2024 Menggunakan Metode Decision Tree (Studi Kasus Sma Islam Alazhar 5 Cirebon).” Jurnal Manajamen Informatika Jayakarta 4(2): 195.

Hakiki, M. H. (2024). Prediksi Konsumsi Energi Listrik MenggunakanPendekatanNon-Intrusive Load Monitoring. ITS Repository. ITS Repository ps://repository.its.ac.id/111071/).

Hakiki, M. H. (2024). Prediksi Konsumsi Energi Listrik Menggunakan Pendekatan Non-Intrusive Load Monitoring. ITS Repository. ITS Repository

ps://repository.its.ac.id/111071/).

U.S. Energy Information Administration. (n.d.). Annual Energy Review. Retrieved from https://www.eia.gov/

Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence Research, 4, 77-90.

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media.

Downloads

Published

2025-02-01

How to Cite

PENERAPAN ALGORITMA DECISION TREE UNTUK KLASIFIKASI KONSUMSI ENERGI LISTRIK RUMAH TANGGA DENGAN PENGGUNAAN RAPIDMINER (Ubeitul Maltuf & Zaehol Fatah , Trans.). (2025). Jurnal Ilmiah Multidisiplin Ilmu, 2(1), 38-45. https://doi.org/10.69714/0hmk8712